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Only one hundred years ago, hardly any scientist of renown would have 
been unaware of philosophy, and hardly any artist or architect unin-
formed about up-to-date technology and mathematics. Today, our abil-
ity to explain and explicate our own work within a shared horizon of 
assumptions and values beyond our specific scientific community has, 
perhaps paradoxically, turned into an inability and resulted to some 
degree in a kind of speechlessness. Only rarely now is it thought impor-
tant that we relate our work to, and integrate it with, an overall context 
that is in itself “on the table” and up for consideration. More and more, 
that kind of context is taken for granted, without any need for active 
articulation, refinement, or development. At the same time though, the 
media are full of news stories about catastrophes, crises, and an impend-
ing doom that cannot, it seems, be warded off. Climate change, shortage 
of resources and population growth, urbanization — this is just to name 
a few of the critical issues today. Quite obviously, the notion of such 
an overall context, both implicit and assumed, is extremely strained, if 
not indeed overstretched today. This all is widely acknowledged — the 
United Nations Educational, Scientific and Cultural Organization 
(UNESCO) Division of Foresight, Philosophy and Human Sciences in 
Paris, for example, launched a discourse on this subject in their 21st-
Century Talks and Dialogues under the heading “The Future of Values.” 
The companion book, published in several languages simultaneously 
in 2004, is structured in three parts, and includes one chapter on the 
ethical issues of values and nihilism lying ahead, another chapter on 
technological progress and globalization, as well as a third chapter on 
the future of science, knowledge, and future studies. What remains 
strangely implicit, and in that manner ignored here, in a way that is 
typical of this inarticulacy with regard to an overall context mentioned 
above, is the societal, scientific, and cultural role that inevitably is 
ascribed to technology against the backdrop of such discussions, along 
with the expectations that are associated with that role of technology. In 
the Metalithikum series, we tend to regard technology in the extended 

sense of technics at large. Along with its respective solution-oriented 
application to the sciences, culture, economics, and politics, we think 
that technology needs to be considered more fundamentally, especially 
regarding the semiotic and mathematical-philosophical aspects it incor-
porates. From this perspective, we see in technology a common factor 
for facilitating a discourse that seems to have been largely lost from 
today’s discursive landscape, the degree of its disappearance inversely 
proportional to the increasingly central role technology plays in every 
domain of our lives. Such a discourse seems crucial if we are to develop 
adequate schemes for thinking through the potentials of today’s tech-
nology, something that is in turn essential for all planning. Our stance 
is an architectural and, in the philosophical sense, an architectonic one. 
Our main interest centers on the potentials of information technology, 
and how we can get used to the utterly changed infrastructures they 
have brought us.
But have our infrastructures really changed substantially? Or is it 
merely the case that a new level of media networks has emerged on 
top of technology with which we are already familiar? Are the “new” 
and digital media simply populating and exploiting, in a parasitic sense, 
the capacities of modern industrial infrastructures that have brought 
prosperity and wealth to so many? In his contribution to the UNESCO 
dialogues, Paul Kennedy was still convinced : “In the Arabic world, 3% 
of the population has access to the internet. In Africa, it’s less than 1%. 
This situation won’t improve as long as the infrastructures remain in 
their current state. It won’t change, as long as these countries lack elec-
trification, telephone wiring and telephones, and as long as the people 
there can’t afford either computers or software. If knowledge is indeed 
power, then the developing countries today are more powerless than 
they were thirty years ago, before the advent of the internet.” Our 
experience since then has allowed us to see things a little differently. 
There are meanwhile as many mobile phones in use worldwide as there 
are people living on the planet. Six billion people out of a seven billion 
world population can meanwhile read, write, and calculate (at least in 
some basic sense). Only three decades ago, this proportional measure 
was not 6 / 7th, but 2 / 5th! We have seen the “Arab Spring” that brought 
simultaneous political revolutions in several Arabic countries, giving 
facticity to the cultural impact of digital media, and this to a degree 
that was unexpected or previously deemed improbable by many. And 
the credence of this facticity is not harmed, we think, by the fact that 
since then we have had to witness ongoing fundamentalist reactions as 
in Syria, where the situation is currently escalating into a veritable civil 
war. To say that the facticity of the cultural impact of digital media is 
not impaired in its credence thereby is not to downplay the seriousness 
of these complex situations. Of course, in political, economic, religious 
reorientation all is at once at stake, and the idea that technological 
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TATIONAL MACHINES 
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DATA STREAMS 
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This article criticizes a majority of 
traditional approaches in scientific 
modeling as following an idealist 
point of view that results from the 
set theoretical understanding of 
models based on the assumption of 
“abstract universals.” We discuss 
the success of set theoretical mod-
els as well as some principle limits 
to applying them in dealing with 
complex systems. As an alterna-
tive to the assumption of abstract 
universals, we propose a concep-
tual modeling framework based 
on “concrete universals” that can 
be interpreted as a category theo-
retical approach to modeling. We 
call this modeling framework pre-
specific modeling. We show how 
a certain group of mathematical 
and computational methods that 
work with data streams are able to 

133III PRE-SPECIFIC MODELING 

1 how to approach the notion of scientific modeling 134 — ii formal 
definitions and categories of scientific modeling 136 — iii 
idealization in scientific modeling 137 — iv universals and modeling 
141 — v specific modeling: models based on abstract universals 
144 · v.i limits of modeling based on abstract universals 146 ·  
v.i.i godel’s incompleteness theorem and arbitrariness of models  
based on abstract universals 146 · v.i.ii curse of dimensionality in 
complex systems 147 · v.i.iii from particular to genericand the con- 
cept of “error” 147 — vi pre-specific modeling: models based on 
concrete universals 148 · vi.i dedekind cut: when a particular object 
is represented by the negation of its complement 149 · vi.ii  
from generic to particular: object -dependent representation 150  — 
vii massive unstructured data streams: an inversion in the notion 
of measurements and data processing 152 — viii computational 
methods supporting pre-specific modeling 156 · viii.i markov 
chains 156 · viii.ii  self-organizing map 161 · viii.ii.i no more external 
dictionary and no more generic object 162 · viii.ii.ii computing with 
indexes beyond ideal curves 165



134 135III PRE-SPECIFIC MODELINGCODING AS LITERACY — METALITHIKUM IV

operationalize the concept of pre-
specific modeling with great ben-
efit and promise. 

i how to approach the notion of scientific modeling

Modeling paradigms, as a necessary element of any scientific 
investigation, act like pairs of glasses that impact the way in which we 
encode (conceive of) the real world. Therefore, any kind of intervention 
in real world phenomena is affected by the chosen modeling paradigm and 
the real phenomena under investigation. In the domain of urbanism and 
urban design, cities as complex and open environments with dynamic and 
multidimensional aspects are challenging cases for modeling scholars, as 
there are many distinct urban phenomena. Figure 1 shows a list of differ-
ent functional aspects of urban phenomena in an indexical manner.

In addition to the diversity of urban problems, there is a huge variety of 
competing paradigms for analyzing cities : the city as an ecological phe-
nomenon that is optimally adjusted to an environment (economic, politi-
cal, cultural) assumed to be “natural” for it; the city as a thermodynamic 
system that needs to be balanced and that can be controlled; the city as 
a grammatical text with its own “syntactic laws”; the city as a biological 
organism following fractal growth patterns. Further, historical perspec-
tives provide additional city models such as the City of Faith, the City as 
Machine, or the Organic City,1 and especially, since the advent of comput-
ers from the second half of the twentieth century, city as information.2 

1 See Kevin Lynch, Good City Form (Cambridge, MA: MIT Press, 1984).
2 See Manuel Castells, The Informational City: Information Technology, Economic 

Restructuring, and the Urban-Regional Process (Oxford: Blackwell, 1989), 15.

Compared to classical science and its engineering disciplines such as phys-
ics, chemistry, and mechanics, urban design, planning, and modeling is a 
rather young discipline; yet when one does a quick search of the keywords 
central to this field, one is quickly confused by the number of approaches 
and the variety of practical problems within the reaches of the discipline. 
For example, A. G. Wilson’s five-volume text on urban modeling is over 
2,600 pages long.3 A broad range of case-based canonization has thus 
emerged, and applied techniques are developed for specific urban functions 
such as urban land use, urban transportation, urban economy, urban social 
patterns, and so on. As a result, the lack of a more abstract categorization of 
applied techniques makes comparison between them very hard.
Beginning in the mid-twentieth century, general systems theory emerged 
as one of the main theories for working toward unification of different 
disciplinary modeling practices.4 In principle, the underlying idea of sys-
tems theory is the promotion of a unified view to modernist-reductionist 
science, which was diversified around a variety of application and func-
tional domains. Although interdisciplinary collaborations such as making 
analogies within disciplines (e.g., hydraulic theories to describe biological 
systems) was not new, systems theory’s formalization, as an orthogonal 
view to classically diversified scientific and practical problems, reached a 
point in which, according to George Klir, systemic tasks such as modeling, 
optimization, and simulation emerged as distinct scientific disciplines.5 
However, taking systems theory as a body of knowledge (rather than a 
specific and singular theory), one could expect a gradual divergence of 
its methods, starting from its unified principles. The advent of computa-
tional methods by Alan Turing in the 1940s and later the democratiza-
tion of computational methods in the 1980s created a new diversified 
landscape of system modeling approaches. As a result, after fifty years 
we encounter a competitive ecosystem of different modeling species with 
different capacities and trade-offs. Figure 2 shows a list of different mod-
eling methodologies in an indexical manner.

3 A. G. Wilson, Urban Modelling: Critical Concepts in Urban Studies, vols. 1–5 
(London: Routledge, 2012).

4 See Ludwig von Bertalanffy, General Systems Theory (New York: George Braziller, 1993). 
5 See George J. Klir, Architecture of Systems Complexity (New York: Saunders, 1985).

fig. 1.
Different functional 
aspects of urban 
phenomena.

fig. 2.
Competitive 
ecosystem of dif-
ferent modeling 
methodologies.
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Therefore, the first motivation of this present essay is to find a unifying 
(abstract) perspective for an assessment of different (interdisciplinary) 
modeling approaches, while keeping the diversities. Toward this aim, 
we need to investigate the mathematical and philosophical grounds of 
scientific modeling. 

ii formal definitions and categories of scientific modeling 

Because there is such a wide variety of modeling approaches in 
different scientific domains, formalizing and theorizing the practice of 
scientific modeling is an active research area in the philosophy of sci-
ence. For example, according to Roman Frigg and Stephen Hartmann, 
there exist the following types of models:

Probing models, phenomenological models, computational mod-
els, developmental models, explanatory models, impoverished 
models, testing models, idealized models, theoretical models, 
scale models, heuristic models, caricature models, didactic mod-
els, fantasy models, toy models, imaginary models, mathemati-
cal models, substitute models, iconic models, formal models, 
analogue models and instrumental models are but some of the 
notions that are used to categorize models.6 

Nevertheless, these categories are not still abstract enough, but rather 
labels for different (not necessarily exclusive) modeling approaches.
To better understand models, one can look at the interpretation of their 
roles and functions, and to distinguish the presets on which the differ-
ent points of view are based. One of the main issues by which models 
have been extensively discussed is the relation between models and the 
way of representation of real phenomena under study (the target sys-
tem). According to Frigg and Hartmann, from a representational point 
of view there are “models of phenomena” and “models of data,”7 and 
within these categories there are subcategories such as “scale models,”8 
“idealized models,”9 and “analogical models,”10 like the hydraulic model 
of an economic system, which are further divided into material analogy, 
where there is a direct similarity between the properties (or relations 
between properties) of two phenomena, and formal analogy, where two 
systems are based similarly on a formalization such as having the same 

6 Roman Frigg and Stephan Hartmann, “Models in Science,” in Stanford Encyclopedia of 
Philosophy, ed. Edward N. Zalta (Fall 2012), ed. Edward N. Zalta, http://plato.stanford.
edu/archives/fall2012/entries/models-science/.

7 Ibid.
8 Max Black, Models and Metaphors: Studies in Language and Philosophy (Ithaca, NY: 

Cornell University Press, 1962).
9 Ernan McMullin, “Galilean Idealization,” Studies in History and Philosophy of Science 

Part A 16, no. 3 (1985): 47–73.
10 Mary B. Hesse, Models and Analogies in Science (London: Sheed and Ward, 1963).

mathematical equations that describe both systems 11. Further, one can 
refer to phenomenological models, which are focused on the behavior of 
the particular phenomena under investigation rather than on underlying 
causes and mechanisms.12 Further still, there are models of theories, like 
the dynamic model of the pendulum, which are based on laws of motion. 
Models can also be divided into ontological classes like physical objects, 
fictional objects, set-theoretic structures, descriptions, and equations.
However, these categories of models and modeling approaches overlap 
and they are descriptive and neutral classifications rather than critical. 
They do not give us a measure or a gauge to compare different modeling 
approaches in terms of their capacities and their limits in dealing with 
different levels of complexity in real world problems. In this essay I am 
looking for a way to condition modeling approaches in different levels of 
complexity to examine their theoretical capacities.
Among the abovementioned categories, the crucial but somewhat com-
monly accepted shared property of the majority of traditional scientific 
modeling approaches is that they are all based on some sort of idealization.
In what follows, I explain different aspects of idealization in scientific 
modeling. The issue of idealizations directs us to the problem of univer-
sals, which is an old philosophical issue.13

iii idealization in scientific modeling

In the context of philosophy of science, idealization in modeling 
has been discussed extensively.14 In principle, idealization is considered 
to be equal to an intended (over-)simplification in the representation 
of the target system. Although there are different ways of explaining or 
defining the notion of idealization, Michael Weisberg discusses three 
kinds of idealization that we refer to in this work: minimalist idealiza-
tion, Galilean idealization, and multiple-model idealization.15 
Minimalist idealization is the practice of building models of real world 
phenomena by focusing only on main causal factors. Therefore, as is 
inferred from its name, minimalist models usually result in very sim-
ple elements that are informative enough for further decision making. 
For example, the aim in the domain of network analytics is to explain 
complex behaviors that happen in the real phenomena by means of net-
work properties such as centrality measures, integration, closeness, 

11 Ibid.
12 Ernan McMullin, “What Do Physical Models Tell Us?,” Studies in Logic and the 

Foundations of Mathematics 52 (1968): 385–96.
13 See Gonzalo Rodriguez-Pereyra, “What Is the Problem of Universals?,” Mind 109, 

no. 434 (2000): 255–73.
14 See McMullin, “Galilean Idealization”; Leszek Nowak, “Laws of Science, Theories, 

Measurement,” Philosophy of Science 34 (1972): 533–48; Michael Weisberg, “Three 
Kinds of Idealization,” Journal of Philosophy (2007): 639–59.

15 Weisberg, “Three Kinds of Idealization.” 
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between-ness, etc.16 As an example, in urban theory, in the city science 
approach17 or urban scaling laws18 the final goal is to find a few main 
informative factors in cities such as city size or population in order to 
explain other aspects of cities such as energy consumption in a linear 
equation. Even though it seems obvious that cities are complex phe-
nomena with many observable aspects and many exceptions, minimalist 
models attract attention exactly because they identify and state very 
general rules. 

City theories that seek to create archetypal city models are in a way 
using minimalist idealized models. For example, Lynch’s City of Faith, 
City of Machine, or City as Organism, or Cedric Price’s egg analogies of 
the city (city as boiled egg, city as fried egg, or city as scrambled egg) are 
characterized by a few urban elements that are informative enough to 
explain each model and to discriminate that city model from the other 
models. David Grahame Shane shows how the three abovementioned 
models could be identified by linear combinations of three recombinant 
elements, called Enclave, Armature, and Heterotopia.19 
The second category of Galilean idealization as the most pragmatic 
type of idealizations happens when the modeler intentionally simplifies 
the conditions of a complicated situation toward more computational 
tractability and simplicity. For example, it is common in economic 
models to assume that agents are rational maximizers, or in transpor-
tation models to assume that commuters take the shortest path, or 
to assume there is no friction in motion models of the particles. The 
basic idea of Galilean idealization is that by understanding the model-
ing environment gradually, it is possible to de-idealize or to build more 

16 See Mark Newman, Networks: An Introduction (Oxford: Oxford University Press, 
2010).

17 See Luís M. A. Bettencourt et al., “Growth, Innovation, Scaling, and the Pace of Life in 
Cities,” Proceedings of the National Academy of Sciences 104, no. 17 (2007): 7301–06.

18 See Michael Batty, “The Size, Scale, and Shape of Cities,” Science 319, no. 5864 
(February 8, 2008): 769–71.

19 David Grahame Shane, Recombinant Urbanism: Conceptual Modeling in Architecture, 
Urban Design, and City Theory (Chichester: Wiley, 2005).

comprehensive models on top of previous ones. Therefore, the majority 
of engineering approximation methods such as systems of differential 
equations or computational fluid dynamics or biological reaction net-
works are among this category of idealized models. Further, figure 4 
shows how the idealization process in a complex phenomenon (here, 
the agent-based modeling of land-use transportation dynamics of a 
city) leads to a parametric and feature-based representation of the real 
phenomena. This layering and parameterization gives the modeler the 
option to adjust the resolution (levels of details) of the model based on 
the needs and the purposes of the modeling process and the constraints 
and limitations, including the availability of data or prior knowledge or 
time and scale resolutions.

The third category of idealization, multiple-model idealization, 
results from those models that consist of several (not necessarily 
compatible) models or several models with different assumptions and 
different properties. This type of idealization is in fact a combination 
of two other idealizations and it can be very useful when understand-
ing the final output (the behavior) of the model is more important 
than knowing the underlying mechanisms of the target phenomena. 
For example, in weather forecasting, ensemble models, which include 
several predictors with different parameters or even different struc-
tures, are used to predict weather conditions.20

Further, from a systemic and functional point of view there are many 
models in which idealization is happening in (one) main aspect(s) of real 
phenomena. To just name a few : static or dynamic models, structure-
oriented idealization (in network models), process-oriented idealization 

20 See Tilmann Gneiting and Adrian E. Raftery, “Weather Forecasting with Ensemble 
Methods,” Science 310, no. 5746 (2005): 248–49.

fig. 3.
Network analytics: 
Structure-oriented 
modeling (minimal-
ist idealization), 
Central Place 
Theory (left) and 
Space Syntax (right). fig. 4.

Parametricism: 
Idealization of 
the interactions 
between different 
agencies through 
layering and parame-
terization of the real 
phenomena.
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(such as system dynamics,21 system of differential equations), rule-based 
idealization (such as cellular automata22 or fractals23), and decentralized 
interactions (such as agent based), all are placed in the abovementioned 
categories of idealizations.

However, considering the size and the variety of parameters and 
aspects in the target phenomena, idealized models create a dichot-
omy, where on one extreme the models are all general, simple, and 
tractable, and on the other, models become complicated, specific, 
and high-resolution. In fact, multiple model idealization becomes 
necessary whenever the selected parameters and aspects of the tar-
get system in each individual model (out of Galilean idealization for 
example) are not sufficient, but also add more aspects to an individual 
model, either making it more complicated or resulting in model incon-
sistency. This issue seems to be a never-ending debate in many scien-
tific fields, including biology, ecology, economics, and cognitive and 
social science, where one group believes in the explanatory power of 
models and the other group believes in model accuracy and the level 
of details comparing to the real phenomena.24 

21 John Sterman, Business Dynamics: Systems Thinking and Modeling for a Complex 
World (New York: McGraw Hill, 2000)

22 Waldo Tobler, “Cellular Geography,” in Philosophy in Geography, ed. Stephen Gale and 
Gunnar Olsson (Boston: D. Reidel, 1979), 379–86.

23 Benoit Mandelbrot, The Fractal Geometry of Nature (New York: W. H. Freeman & Co., 1982).
24 See Matthew R. Evans et al., “Do Simple Models Leads to Generality in Ecology?,” 

Trends in Ecology & Evolution 28, no. 10 (2013): 578–83; Matthew R. Evans et 
al., “Data Availability and Model Complexity, Generality, and Utility: A Reply to 
Lonergan,” Trends in Ecology & Evolution 29, no. 6 (2014); Mike Lonergan, “Data 
Availability Constraints Model Complexity, Generality, and Utility: A Response to 
Evans et al.,” Trends in Ecology & Evolution 29, no. 6 (2014).

Although idealized models have been applied successfully in many clas-
sical modeling problems, this type of debate cannot be fruitful in dealing 
with complex systems as long as there is no abstraction from the current 
paradigm of scientific modeling (i.e. idealization). Analogically, an onion-
like model of numbers explains what I mean by the abstraction in the 
concept of modeling. For example, with natural numbers (or more gener-
ally, integers) one can never grasp the richness of proportions and frac-
tions in rational numbers (e.g., 2.6, which is neither 2 or 3 from a natural 
number perspective), while the introduction to the concept of rational 
numbers as the ratio of two integer numbers (e.g., 26/10) solved this prob-
lem. Therefore, by choosing 1 as the denominator, one can show that all 
the integers are rational numbers; while with rational numbers we have 
new capacities in addition to integers. Similarly, if we take an idealized 
model as an arbitrary representation of real phenomena by adding several 
of them together (which is the case in multiple model idealization), we 
still cannot grasp the whole complexity. Therefore, our hypothesis is that 
an abstraction to the concept of modeling is needed in order to conceptu-
ally encapsulate all the potential arbitrary views in an implicit way.
However, I do not claim that one can introduce a new concept as such, 
but in fact in this work I am trying to identify and discover new aspects 
of a potential body of thinking in scientific modeling. 
In order to highlight this conceptual abstraction from the current ide-
alization paradigm, first we need to explain the notion of universals, 
including abstract and concrete universals, followed by our interpreta-
tions of these concepts in relation to the notion of scientific modeling. 
In the next section, after presenting the connections between the notions 
of idealization and abstract universals, I will formally describe the con-
cepts of abstract universals and concrete universals, which can be inter-
preted as set theoretical and category theoretical definitions of these two 
notions.25 Further, I will show how the concept of concrete universals 
from category theory can open up a new level of modeling paradigm. 

iv universals and modeling

In the majority of texts written about idealization in the domain 
of scientific modeling, the notion of idealization is equal to simplifi-
cation and the elimination of empirical details and deviations from a 
general theory that is the base for the final model. At the same time, 
the word “ideal” literally comes along with “those perfections that can-
not be fully realized.” For example, circle-ness as a property is an ideal 
that cannot be fully realized, and any empirical circular shape has, to a 
degree, the circle-ness property.

25 David P. Ellerman, “Category Theory and Concrete Universals,” Erkenntnis 28, no. 3 
(1988): 409–29.

fig. 5.
System dynamics: 
process-oriented 
idealization.
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Therefore, the idealization process in scientifi c modeling can be explained 
as a form of purifi cation of empirical observations toward a set of given 
(assumed) ideal properties. In statistical data analysis, it is always assumed 
that collected empirical data follows a normal distribution function. Thus, 
one can convert the empirical data to a normal distribution function and 
utilize it in a “normalized” manner that results from the machinery of this 
ideal mathematical representation (i.e. the normal distribution function). 
Applications of idealizations in many mathematical approaches such as 
linear algebra are enormous. For example, a Fourier transformation (fi gure 
7) can be seen as a form of idealization by which any observed time-varying 
data can be reconstructed (approximately) by a set of time-varying vec-
tors (a set of pure sinusoidal waves with diff erent frequencies and phases). 
From this perspective, any waveform phenomenon is a linear combination 
of a set of ideal prototypes.

However, these ideal forms (a wave with a certain frequency in the case 
of the Fourier analysis) as the set of aspects (properties) of real phe-
nomena are abstract. This means that there is no concrete (empirical) 
instance that fully matches one or several of these a priori, ideal proper-
ties. From this point of view, idealized models are models that are based 
on the notion of abstract universals. 

The notions of “universals” and “property” are old topics in philoso-
phy that can be approached diff erently, namely through realism, ideal-
ism, or nominalism.26 However, in this work I focus on the distinctions 
between concrete and abstract universals in relation to the paradigms 
of scientifi c modeling.
According to David Ellerman, “In Plato’s Theory of Ideas or Forms 
(ειδη), a property F has an entity associated with it, the universal uF, 
which uniquely represents the property. Therefore, an object X has the 
property F i.e. F(X), if and only if it participates in the universal uF to 
a degree (µ).”27 For example, “whiteness” is a universal and the set of 
white objects that participate in “whiteness” property (i.e., with dif-
ferent degrees of whiteness) are represented by this property. Further, 
“Given a relation µ, an entity uF is said to be a universal for the property 
F (with respect to µ) if it satisfi es the following universality condition : 
For any x, x µ uF if and only if F(x).”28

This condition is called universality, and it means that the universal is 
the essence of that property. 
In addition to universality, a universal should be unique. “Hence there should 
be an equivalence relation (≈) so that universals satisfy a uniqueness condi-
tion : If uF and uF’ are universals for the same F, then uF ≈ uF’.”29 Therefore, 
any entity that satisfi es the conditions of universality and uniqueness for 
a certain property is a universal for that property. Now, if a universal is 
self-participating, it is called a concrete universal; if it does not have self-
participatory properties, it is an abstract universal. For example, whiteness 
is an abstract universal as there is no empirical (concrete instance) to be 
“whiteness.” In language models, being a “verb” is a property that can be 
assigned to many words, but “verb” itself is an external defi nition and it is 
not self-participating in the sets of concrete verbs. The same argument goes 
for the above example of the Fourier analysis and ideal forms. 
On the other hand, defi ning a property as being part of set A and set 
B has a concrete universal, which is the intersection of two sets A and 
B (A ∩ B). It means that any object from set A and B (including all the 
potential subsets) that has this property (being part of A and B) par-
ticipates in the intersection set A ∩ B, and since A ∩ B is participating in 
itself, then it is a concrete universal.
Further, Ellerman shows that modern set theory is the language of 
abstract universals and how category theory can be developed as the 
mathematical machinery of concrete universals. Finally, he summarizes: 

Category theory as the theory of concrete universals has a diff er-
ent fl avor from set theory, the theory of abstract universals. Given 

26 See Rodriguez-Pereyra, “What Is the Problem of Universals?” 
27 Ellerman, “Category Theory and Concrete Universals,” 410.
28 Ibid.
29 Ibid., 411.
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the collection of all the elements with a property, set theory can 
postulate a more abstract entity, the set of those elements, to be 
the universal. But category theory cannot postulate its universals 
because those universals are concrete. Category theory must find 
its universals, if at all, among the entities with the property.30

In the past few decades there have been many theoretical works to fur-
ther the new field of category theory in terms of this fundamental dif-
ference between set theory and category theory. For example, currently 
the main categorical approaches in mathematics are topos theory and 
sheaf theory, which are generalizations of topology and geometry to an 
algebraic level.31 It seems that applications of these general frameworks 
in different domains should be one of the main future research areas in 
the field of modeling. On the other hand, Ellerman concludes:

Topos theory is important in its own right as a generalization of set 
theory, but it does not exclusively capture category theory’s foun-
dational relevance. Concrete universals do not “generalize” abstract 
universals, so as the theory of concrete universals, category theory 
does not try to generalize set theory, the theory of abstract uni-
versals. Category theory presents the theory of the other type of 
universals, the self-participating or concrete universals.32

Now that we have defined the concepts of abstract and concrete univer-
sals, we need to formalize two different approaches of modeling, which 
are based on these notions of the universal. 
As stated earlier, idealized models are models that are based on the 
notion of abstract universals and consequently idealized models can be 
interpreted as set theoretical models. In the next section, by focusing on 
the idea of representation in idealized models, I show their theoretical 
consequences and their limits in dealing with complex systems, with the 
definition of the abstract universal being crucial. Next, I show another 
conceptual representational framework that is matched with the con-
cept of concrete universals. Further, I will introduce an alternative line 
of modeling to idealized modeling.

v specific modeling: models based on abstract universals

The fundamental difference between abstract and concrete uni-
versals is the issue of self-participation. In terms of modeling and repre-
sentation, in those models based on abstract universals, the definition 
of the common property of the target system is a priori, given in a meta-
level. This means that in an empirical setup, we have an externally given 

30 David Ellerman, “On Concrete Universals: A Modern Treatment Using Category 
Theory”; available online at SSRN, http://ssrn.com/abstract=2435439, here p. 6. 

31 See Saunders Mac Lane and Ieke Moerdijk, Sheaves in Geometry and Logic: A First 
Introduction to Topos Theory (New York: Springer, 1992).

32 Ellerman, “Category Theory and Concrete Universals,” 16–17.

idea about the set of properties (aspects) of the real phenomena under 
study at the beginning of the modeling process. As an example, if we are 
comparing many concrete objects (e.g., several apples), we first need to 
define a set of specific properties (such as size, color, taste, etc.) to con-
struct a representation of apple-ness. Therefore, apple-ness is reduced to 
this external setup. We call this approach specific modeling as it is based 
on a set of specific properties of the target system. In relation to the ide-
alization process, the level of details in terms of the number and variety 
of properties is the choice of the modeler. If the modeler considers few 
aspects of the target system the model becomes simple and if he or she 
selects many aspects or properties, the model becomes complicated.
Figure 8 shows the concept of idealized representation in specific 
modeling schematically. Each circle in this figure stands for a concrete 
object. These objects are symbolic, which means that they can stand for 
anything — be it people, cars, companies, buildings, streets, neighbor-
hoods, cities, websites, protein networks, networks of words in a corpus 
of texts, or people and their activities in a social network. Therefore, in 
the first step, we need to define our abstract universals, which leads to 
a set of selected features of the real objects. These features are shown 
by rectangles. As a result of these universal features, the concrete 
instances of the object are assumed to be independent from each other, 
as they will be all compared indirectly by an abstract class definition, 
which acts as an external reference.

This is the underlying notion of rationality started in sixteenth cen-
tury by René Descartes and it should be mentioned that it offers a 
fantastic mechanism and an abstract language for axiomatization of 
different phenomena. Nevertheless, there are fundamental limits to 
this approach of modeling in dealing with complex phenomena, with 
many different properties, where the specific models need to define an 
arbitrary set of properties. 

fig. 8.
Specific modeling-
based abstract 
universals and para-
metric idealization 
of the target object.



146 147III PRE-SPECIFIC MODELINGCODING AS LITERACY — METALITHIKUM IV

v.i limits of modeling based on abstract universals
Within the literature of scientific modeling, the majority 

of discussions on the issues of scientific modeling approaches are 
bounded to models based on abstract universals and the differences 
of different idealization processes. Among the few investigations, 
Richard Shillcock discusses the fundamental problems of modeling 
in the domain of cognitive science from the perspective of universals. 
He notes: “Cognitive science depends on abstractions made from the 
complex reality of human behaviour. Cognitive scientists typically 
wish the abstractions in their theories to be universals, but seldom 
attend to the ontology of universals.”33 Later he explains several fun-
damental problems in the domain of cognitive science by reviewing 
the different aspects of abstract and concrete universals. In what fol-
lows I present some of the fundamental issues of the models that are 
based on abstract universals.

v.i.i gödel’s incompleteness theorem and arbitrariness of  
 models based on abstract universals

In models based on abstract universals, the universal proper-
ties are not self-participating. Intuitively, one can argue that in any 
level of abstraction, members of a set are concrete and the set itself 
is abstract with regard to its members. Therefore, the first modeling 
step is the decision about the set of properties that define (represent) 
the object of inquiry. To have a set of concrete instances (e.g., set of 
red apples), one needs a super-set that defines the ideal properties 
of that class (the apple-ness and the red-ness). This requirement 
(brought forward by Plato) initiates a never-ending hierarchical 
process of defining abstract universals for the higher order classes 
(e.g., a set for colors). As a result, one can argue that in practical 
modeling domains, from a meta-level above, models are based on 
assumed or commonly agreed properties of the target system. This 
problem can be explained by Gödel’s incompleteness theorem, that 
is to say we only can make a consistent system if it is based on an 
unproved truth (the incomplete model); if the model is complete 
(everything based on proofs), it cannot be consistent.34 This beauti-
ful theorem simply says that any model that is based on abstract 
universals is in a way arbitrarily consistent, but not simultaneously 
complete. The same argument holds for the case of Russell’s para-
doxes and naive set theory.35

33 Richard Shillcock, “The Concrete Universal and Cognitive Science,” Axiomathes 24, 
no. 1 (2014): 63–80, here p. 63.

34 Panu Raatikainen, “Gödel’s Incompleteness Theorems,” Stanford Encyclopedia of 
Philosophy, ed. Edward N. Zalta (Winter 2014), http://plato.stanford.edu/archives/
win2014/entries/goedel-incompleteness/.

35 See Ellerman, “Category Theory and Concrete Universals.” 

v.i.ii curse of dimensionality in complex systems
Models based on abstract universals have been successfully 

applied in many practical domains such as classical physics, medicine, 
and engineering. Nevertheless, they reach a computational limit in deal-
ing with complex systems. This limit is directly related to their quest for 
explicit representation of the target systems through a set of specific 
properties. Assume that we measure the complexity of a system (i.e., a 
real phenomenon) as a function of the number of its potential proper-
ties and the relations between those properties.36 In this scenario, in 
comparison to a building a wooden chair is less complex, and the same 
relation holds for a building in comparison to a city.
As a result, by increasing the number of potential properties and their 
interrelationships, and consequently the exponential growth in the 
number of combinations, the space of modeling (i.e., potential specific 
models) expands in an exponential manner. This phenomenon is called 
the curse of dimensionality introduced by Richard Bellman in 1961.37

Consequently, in a complex system, any endeavor toward an explicit 
representation (which is the case in specific modeling) leads either to a 
complicated model (models with lots of redundancy and lack of expla-
nation) or to very simple and minimalistic idealizations. Figure 9 shows 
this issue diagrammatically.

v.i.iii from particular to generic and the concept of “error” 
In the idealization process of particular objects there is no longer 

a unique identity dedicated to a particular (concrete) instance, but rather 
the identity of that particular case is realized as a combination of glob-
ally defined properties (see figure 8). In other words, in models based on 

36 See Klaus Wassermann, “That Centre-Point Thing — The Theory Model in Model 
Theory,” in Printed Physics — Metalithikum I, ed. Vera Bühlmann and Ludger Hovestadt 
(Vienna: Ambra, 2013), 156–88. 

37 Richard Bellman, Adaptive Control Processes: A Guided Tour  (Princeton, NJ: Princeton 
University Press, 1961).

fig. 9.
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abstract universals the particular object is considered as an instance of a 
(fi ctitious) generic object. Along the same line, Shillcock says: “The con-
crete universal is a universal, but it has all the richness of the particular. 
Whereas an abstract universal can be defi ned as something abstract (typi-
cally seen as a property) that inheres in many other diff erent things, a con-
crete universal is an entity in which many other diff erent things inhere.”38

Consequently, constructing the notion of a generic object through the 
lens of abstract universalism, we impose a limit to empirical devia-
tions and treat them as errors. For example, assuming linearity as an 
ideal property in a system, the generic object has a purely linear behav-
ior while other objects are erroneous (they deviate from the line) to a 
degree. Figure 10 shows this issue in the case of linear regression. In a 
two-dimensional linear system, it is assumed that for any observation 
(i.e., a concrete object via its x and y dimensions) there is a linear rela-
tion in the form of y=ax + c. Therefore, those points that don’t fall in a 
common line have a degree of error in comparison with the ideal line. 

vi pre-specific modeling: models based
 on concrete universals

In this section, we investigate the potentials for a new level of abstractions 
in paradigms of scientifi c modeling. This is not in opposition to specifi c 
modeling (i.e., models based on abstract universals), which is a common 
approach in social science and the humanities, rather it is based on the 
notion of concrete universals from category theory. As discussed in the 
previous section, models that we call specifi c models are based on a priori 
defi ned or selected abstract universals. Further, they have certain theo-
retical limits and issues in dealing with complex systems. Therefore, my 
hypothesis is that if any specifi c model is like an arbitrary view to the real 

38 Shillcock, “The Concrete Universal and Cognitive Science,” 71.

phenomena, there should be a category of models that encapsulates all the 
potential specifi cs in an implicit way. We call this approach pre-specifi c 
modeling, which was originally introduced by Vera Bühlmann.39

If specifi c modeling can be theorized by set theory and abstract uni-
versals, pre-specifi c modeling should be supported by the concepts of 
category theory and concrete universals. In order to establish the build-
ing blocks of pre-specifi c modeling, we need to focus on fundamental 
assumptions of the specifi c modeling.

vi.i dedekind cut: when a particular object is represented
 by the negation of its complement

In specifi c modeling, when one defi nes the abstract universal in 
terms of a set of specifi c properties, a parametrical generic object will be 
conceptualized directly. The individual objects can then be reconstructed 
(analyzed) or generated (synthesized) by changing the values of those 
specifi c parameters in the generic object. As a fundamental example, we 
refer to number theory and the defi nition of rational numbers as the ratio 
of two integers m and n, where n is not equal to 0. In this case, any specifi c 
rational number, q, can be directly represented by infi nite pairs of (m, n) 
integer values, where m / n = q. In other words, q is graspable directly and 
independently from the other rational numbers. However, as we know, 
the rational numbers are countable and they are only a small fraction of 
the whole space of the real numbers. As a result, this approach reaches 
a point in some cases where no one can defi ne a real number on its own.

For example, √2 cannot be touched by the abovementioned proce-
dure. In general, this is the case for irrational numbers. A diff erent 
method for the defi nition of irrational numbers is required. In the 
late nineteenth century, Richard Dedekind came up with a diff erent 

39 Vera Bühlmann and Martin Wiedmer, eds., Pre-Specifi cs: Some Comparatistic 
Investigations on Research in Art and Design (Zurich: JRP|Ringier, 2008).

fig. 10.
Introduction to the 
concept of error: The 
deviation of particu-
lar objects from the 
ideal line.

fig. 11.
Rational  numbers 
cannot fi ll the 
space of real 
numbers. Each line 
 corresponds to one 
rational number.



150 151III PRE-SPECIFIC MODELINGCODING AS LITERACY — METALITHIKUM IV

conceptual definition of irrational numbers, known as the Dedekind 
cut.40 Intuitively, a Dedekind cut is a unique way of representing an irra-
tional number by its complementary set. He defined a cut for a specific 
number, b, as the space between two ordered sets of rational numbers 
A and B, where all the elements of A are less than all the elements of B 
and further all the elements of A are smaller than b and all the elements 
of B are equal or greater than b. Definitely, if b is a rational number, the 
union of set A and B is the whole number space of real numbers, U, and if 
b is an irrational number, b is equal to U minus the union of sets A and B 
(AUB). For example, in order to define √2, A is the collection of all nega-
tive rational numbers and the collection of every nonnegative rational 
number whose square is less than 2 and B is the collection of all positive 
rational numbers whose square is larger than 2.

Further, two irrational numbers can be compared through their corre-
sponding cuts — if their cuts are equal, these numbers are identical. By 
this definition each specific irrational number is represented uniquely 
as the negation of its complement, while it is not directly touchable. 
This is opposite to that of a rational number, where it can be directly 
pointed out. We think that regarding the issue of object representation, 
the Dedekind cut importantly implies that it is possible to introduce an 
alternative approach for representation of the objects to what is com-
mon in specific modeling (shown in figure 8).41

vi.ii from generic to particular: object-dependent
 representation

The core aspect about any modeling paradigm is how real phe-
nomena are represented. As figure 8 shows, by selecting the set of repre-
sentational properties of the real phenomena in specific modeling, each 

40 Richard Dedekind, “The Nature and Meaning of Numbers,” in Essays on the Theory of 
Numbers, trans. W. W. Beman (Chicago: Open Court Publishing, 1901 [1898]).

41 For more detailed discussions around the conceptual and philosophical underlying ideas 
of the Dedekind approach, refer to what Ludger Hovestadt mentions as centered voids 
in Vera Bühlmann and Ludger Hovestadt, ed., EigenArchitecture (Vienna: Ambra, 2014). 

individual object is represented directly. In other words, the identity 
of a particular object is defined independently of the other (concrete) 
objects as long as we have a global axiomatic set up (i.e., those selected 
properties) to define the generic object. Here, the generic object is the 
abstract universal, in which with different parametric values one can 
instantiate or approximate a particular object. Referring to the example 
of number theory, this is similar to the case of rational numbers, where a 
specific number can be generated as the ratio of two integers.
Now, imagine an empirical representation of concrete objects in net-
work-based representation in which nodes of connectivity, which are 
to specify in multidimensional ways, represent objects. For example, the 
number of cars that pass from one street to another, or the relation estab-
lished by two individuals who select the same restaurant, or the relation 
between two cities that host offices of the same company, or the number 
of times a specific word has appeared after another specific word. In 
distinction to parametric representation of objects, the identity of an 
object is defined directly in terms of the relations it maintains with the 
other objects. The main difference between the two approaches is that 
in the feature (property) based approach, the specific identity of objects 
is assumed independently, while in the network-based representation, 
the identity of objects is regarded as pre-specific, and is specified purely 
relationally, out of the connectivity, which is observable. Two objects 
are considered identical if they share the same sets of relations with 
other objects. 
Figure 13 shows the representation of concrete objects in a network-
based approach. 

In specific modeling, each property has an abstract universal, but in 
object — object relations, each concrete object is a property (for exam-
ple A-ness for concrete object A) and thus we have concrete univer-
sals for each property, as each object has an identity relation with itself. 

fig. 12.
Dedekind cut: 
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the negation of its 
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fig. 13
Object-dependent 
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in pre-specific 
modeling.
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Assuming each concrete object as a feature, we can represent each object 
via its relation to the other objects. In comparison with the definition of 
irrational numbers by the Dedekind cut, here too the identity of a partic-
ular concrete object is defined as the negation of the identity of the other 
particulars. Note that here there objects that are not yet defined — unlike 
the case of parametric object representation.
This setup, as shown in figure 13, is an object-dependent representation 
that is conceptually scalable with the size of empirical objects. While in 
specific modeling the size of parameters is independent to the number 
of concrete objects (i.e., observations), in object-dependent representa-
tion, by adding one concrete object we directly add one new aspect for 
the representation of other objects. This aspect makes pre-specific mod-
eling suitable for working with large amounts of data. Further, in many 
areas today, the conditions for these types of representation hold, as we 
have an emergent network of connected instances that can be used for 
the representation of the object of inquiry. 
In section 8 I present two main technical frameworks that support the 
concept of pre-specific modeling — two main applications of object-
dependent representation. However, as I mentioned before implicitly, 
object-dependent representation and pre-specific modeling in general 
are data driven, as the setup shown in figure 13 is based on concrete 
objects. The role of data in pre-specific modeling is different than clas-
sical empirical research when one assumes to have an a priori generic 
object. As pre-specific modeling is proposing a new modeling frame-
work it demands another notion of data, one that is different than tra-
ditionally designed observations and measurements. 

vii massive unstructured data streams: an inversion in the 
 notion of measurements and data processing

In classical scientific modeling, theories and a priori represen-
tations define what should be measured and observed. According to 
Bas C. van Fraassen, a measurement outcome is always achieved rela-
tive to particular experimental setup designed by the user and charac-
terized by his theory.42 Similarly, as we showed in the case of specific 
modeling, by selecting abstract universals we limit the set of potential 
observable aspects of real phenomena. For example, when dealing with 
a pendulum model and using Newtonian laws of gravity as a theoretical 
model to describe the foundation of the motions of particles, data and 
measurements can only empirically validate or propose minor modifi-
cations. Therefore, classical data has always played a marginal role in 
the process of modeling. 

42 Bas C. van Fraassen, “Scientific Representation: Paradoxes of Perspective,” Analysis 70, 
no. 3 (2010): 511–14.

In addition to this conceptual setup, measurement and observation have, 
historically, been very expensive, and this pushed modelers toward more 
structured, designed, and optimized experiments and observations. Taking 
into consideration data in specific modeling, figure 14 shows the classical 
process of modeling. As shown in the diagram, abstract universals (or the 
definition of the generic objects) are always the first and the primary ele-
ment of modeling processes; the data — including its structure (i.e., the 
selected properties of the real environment) and its size (to be statisti-
cally enough) — has a supporting role in model tuning and model valida-
tion. This diagram shows that since the data is the secondary element, 
after a certain level of observation the model quality (in terms of accuracy 
for example) becomes stable, as we have enough data to tune the system.

Nevertheless, considering computational technologies as the dominant 
factors in shaping and directing the area of scientific modeling of the 
last century, the landscape of measurements and data processing has 
been changing dramatically. In a recent article, I discuss three levels of 
computational capacities, known as computing power, computational 
and communicational networks, and data streams.43 The first level 
deals with computing power in terms of numerical simulations in com-
parison with analytical approaches. Historically, there have been dif-
ferent technologies of computation starting with mainframes, moving 
to the democratization of computing through personal computers and 
microcomputers, which are still getting faster and more powerful at an 
exponential rate. The primary function of computing power is numeri-
cal simulation, even though computers have been isolated or with lim-
ited communication abilities. Although computers and their simulation 
power opened up new possibilities for better understanding of the real 
world phenomena in 1960s and 1970s in many fields, for a while during 
the late 1970s, these computational models got data hungry and their 
demand for data was higher than what was available for model tuning 
and validation. This produced some skepticism about the applications 
of computational models to real world problems.44 

43 Vahid Moosavi, “Computational Urban Modeling: From Mainframes to Data Streams,” 
presented at the AI for Cities Workshop, AAAI Conference, Austin, Texas, 2015.

44 See Douglas Lee, “A Requiem for Large Scale Modeling,” Journal of the American 
Institute of Planners 39, no. 3 (1973): 163–78.
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However, alongside the developments within computing technolo-
gies, advancements in communication technologies gradually opened 
up another capacity for modelers, which can be considered as the sec-
ond level of computational capacities. In this level, where computing 
power was not scarce, it was the communication between computing 
systems that turned important. Therefore, new phenomena such as net-
works of sensors, mobile phones or computers, and the Internet started 
to emerge. Gradually, considering the amount of embedded systems 
in many real world applications, computers as computing machines 
became the ground to introduce new functions that were emerging on 
top of computational networks. 
As a byproduct of these networks of computing and communicating 
machines, the amount of digital data started to increase as well. Starting 
from the mid-1990s, technical terms such as “data mining” and “data-
base management” emerged in parallel to a focus on methodology to 
explore digital data (mainly structured data) among modelers. As can 
be seen, data began to emerge around this period, but this data was a 
byproduct of designed measurements and sensory systems. It is impor-
tant to note that by this time the notion of data had not changed from 
its old notion — collected data was still structured and followed by the 
modeler’s choices. In fact, the data still was the secondary element, 
rationally determined by the given properties of the target system. 
However, what had changed dramatically was the amount of digitally 
collected data. It started to grow quantitatively on top of the communi-
cating and computational networks across disciplines. 
Finally the third level, for which we think we have a suitable notion 
of data for pre-specific modeling, emerged only recently. With rapid 
advancements both on the level of computing power and the net-
works of computing systems, and a rapid growth in social media, we 
have encountered a new stage in which on top of ubiquitous computing 
and communicating systems, a new level of abstract phenomenon has 
started to emerge. We have begun to experience exponential growth in 
the amount of information available, together with the mobile comput-
ing devices most people use on a daily basis. This is often called a data 
deluge. Next to the challenges these changes bring, we can also see how 
new areas for research and practice are emerging.45 
It seems clear today that the classic paradigm of observation and data 
gathering has changed radically. Data is produced on an everyday basis, 

45 To just mention a few recent publications: ; Adam Greenfield, Everyware: The Dawning 
Age of Ubiquitous Computing (Berkeley, CA: New Riders, 2006); Uwe Hansmann et al., 
Pervasive Computing: The Mobile World (Berlin: Springer, 2003); Nathan Eagle and Alex 
Penxtland, “Reality Mining: Sensing Complex Social Systems,” Personal and Ubiquitous 
Computing 10, no. 4 (2006): 255–68; Eric Paulos, R. J. Honicky, and Ben Hooker, 
“Citizen Science: Enabling Participatory Urbanism,” in Handbook of Research on Urban 
Informatics: The Practice and Promise of the Real-Time City, ed. Marcus Foth (Hershey, 
PA: Information Science Reference, IGI Global, 2008).

from nearly any activity we engage in, and accumulates from innumer-
able sources and formats such as text, image, GPS tracks, mobile phone 
traces, and many other social activities, into huge streams of informa-
tion in digital code. These unstructured and continuous flows, which 
can be called urban data streams, can be considered as a new infrastruc-
ture within human societies. 
This notion of data is opposed to its classical notion, where data was pro-
duced mainly as the result of designed experiments to support specific hypo-
thetical models or when data was transmitted via defined semantic protocols 
between several inter-operating software. These new data streams are the 
raw materials for further investigations; and similar to computing power, 
they hold new capacities for modeling. As a result of this new plateau, we 
are challenged to learn new ways to grasp this new richness. 
These massive, unstructured urban data streams induce an inversion in 
the paradigm of modeling from specific modeling, and they match the 
concepts of pre-specific modeling and models based on the concept of 
concrete universals.
Therefore, as an alternative to previous modeling process, pre-spe-
cific modeling is mainly based on the coexistence of unstructured data 
streams representing particular objects and self-referential represen-
tation of concrete universals (figure 15). As shown in the next section, 
opposite to a specific modeling paradigm, where data has a limited 
use in modeling process and after a certain level of data size, the per-
formance of models become stable in this level of data-driven mod-
eling and object-dependent representation. Adding more data will 
improve the quality of the final model. This is the power of concrete 
universals that are scalable with data size, unlike parametric models, 
in which after a certain size of data, the parametric state space of the 
generic object becomes full and reduces the discrimination power of 
the model in dealing with a variety of circumstances in complex sys-
tems. By using concrete universals, each new instance will introduce 
a new aspect in relation to the other concrete instances. Therefore, it 
is scalable with data size.

In the next section, I present a certain category of mathematical and 
computational methods that support the notion of pre-specific modeling.

fig. 15
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viii computational methods supporting
 pre-specific modeling 

Even though I’ve presented several examples of pre-specific 
modeling, so far the explanation has remained on a conceptual level. 
Here I present a more technical discussion of two computational meth-
ods that fit very well with the concept of pre-specific modeling. 

viii.i markov chains
Andrei Markov is among the greatest mathematicians of the 

twentieth century; he has made numerous contributions toward form-
ing probability theory, but his major work is the concept of Markov 
chains, which he introduced in 1906. In engineering and applied sci-
entific domains today, many people know Markov chains as a kind 
of memoryless dynamic model: once we have a sequence of random 
variables (x1, x2, x3, … , xt-1, xt), the state of the system at the next 
step (xt + 1) depends only on the previously observed state (xt). These 
processes create a chain of random activities, where there is a proba-
bilistic link between adjacent nodes. Here, we assume the case of dis-
crete time processes with a finite number of states, but in principle 
one can assume to have continuous time and continuous state space. 
Further, the chain is called homogeneous if the conditional distribu-
tions of xt + 1 given xt were independent of time steps. And, assuming 
more sequential dependency, one can construct highe-order chains 
from the state at step t dependent upon its n previous steps, if the 
order of the chain is n. Nevertheless, in the case of first-order chains, 
assuming the mutual dependencies between any two potential states, 
a Markov chain can be represented with a directed graphical network, 
where each node corresponds to a state and the edges between two 
nodes correspond to two conditional probabilities. Figure 16 shows an 
example of a Markov chain with three states.

In the domain of dynamic systems, Markov chains and their many dif-
ferent versions have been studied and applied in diverse applications 
for the simulation of dynamic systems or for the study of steady state 

conditions. They have also been applied successfully to sequence and 
time series prediction and classification.
Markov’s brilliant idea for the representation of a complex phenom-
enon such as natural language in a purely computational manner is par-
ticularly relevant here. Before going into his approach, let us unpack the 
traditional concept of language models. One of the major and to some 
degree dominant concepts of linguistic models is based on the notion 
of abstract universals. In this approach to modeling, which is in accord 
with Noam Chomsky’s,46 a spoken language can be modeled by means of 
a set of semantic and syntactic laws of the specific language. Therefore, 
writing and speaking correctly by an individual means that there is a 
system of production in his or her mind that produces the instances of 
that language following his or her ideal model. This is one of the best 
examples of specific modeling based on the concept of abstract uni-
versals. However, Shillcock notes that because natural languages are 
complex evolving systems, trying to identify the ideal model of a live 
language is always a process of catch-up.47 Therefore, considering the 
evolution and the exceptions and the number of different languages all 
over the world, this approach has never been successfully applied in a 
computational model. 
Now let us refer to the experiments of Markov in 1913, which are 
among the first linguistic models that follow the concept of concrete 
universals.
In what has now become the famous first application of Markov 
chains, Markov studied the sequence of 20,000 letters in Alexander 
Pushkin’s poem “Eugeny Onegin” to discover the conditional prob-
abilities of sequences of the letters in an empirical way. What fol-
lows is the less-discussed way of interpreting Markov chains, i.e. not 
from the traditional viewpoint of dynamic systems but rather via the 
empirical representation of concrete objects. Figure 17 shows the 
underlying concept of object-dependent representation in Markov 
chains. Suppose that we have a defined number of symbols in a spe-
cific language (e.g., all the observed words in the English language). 
Now imagine for each specific word in the collection of our words, 
we consider all the words that have appeared N steps before and 
N steps after that specific word in all of our collected texts and 
we count the total number of occurrences. Next, by normalizing 
the total number of occurrences for each position before and after 
each specific word, we can find the empirical ratio of having any 
word after or before that specific word. Now, assuming these rela-
tions between all of the words exist, we have an object-dependent 

46 Noam Chomsky, “Linguistics and Brain Science,” in Image, Language, Brain, ed. Alec P. 
Marantz, Yasushi Miyashita, and Wayne O’Neil (Cambridge, MA: MIT Press, 2001), 13–23.

47 Shillcock, “The Concrete Universal and Cognitive Science.”
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in modeling of a 
dynamic system.
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representation for each word based on its relation with all the other 
words. This would be a huge pre-specific representation of concrete 
objects. It is pre-specific because compared to the abovementioned 
language models, in this mode of representation of words there is 
no specifically given semantic or syntactic property (e.g., synonym 
structures or grammatical rules) to the words. The whole network is 
constructed out of summation and division operations. However, as 
Markov says, “many mathematicians apparently believe that going 
beyond the field of abstract reasoning into the sphere of effective 
calculations would be humiliating.”48

Here again we have a self-referential setup, where concrete instances 
are implicitly represented by their relations to the other instances. 
As a result, if two particular words have the same function in that 
language, they will have similar relations with the other words. This 
was a big claim in 1906, when there wasn’t even enough computing 
power to construct these relational networks.
As Claude Shannon later noted, even after almost forty years Markov’s 
proposed modeling framework was not practically feasible, since it 
demands a large number of observations and relatively large computa-
tional power.49 Nevertheless, as mentioned in section 7, the recent rapid 
growth in computation power has changed the situation dramatically 
and a similar approach, distributed representation, has attracted many 
researchers and practitioners.50 Further, new applications of neural 
probabilistic models of language are becoming popular, while classical 
approaches in natural language processing are still struggling for a real 
world and scalable application.51

The PageRank algorithm, used in Google searches, is another impor-
tant application of Markov chains that follows the concept of repre-
sentation on objects in a concrete level.52 Around the year 2000, due to 

48 Markov, quoted in Gely P. Basharin, Amy N. Langville, and Valeriy A. Naumov, “The Life 
and Work of A. A. Markov,” Linear Algebra and Its Applications 386, no. 14 (2003): 3–26.

49 Claude E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical 
Journal 27, no. 3 (1948): 379–423.

50 Yoshua Bengio, Aaron Courville, and Pascal Vincent, “Representation Learning: A 
Review and New Perspectives,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence 35, no. 8 (2013): 1798–828.

51 Yoshua Bengio et al., “A Neural Probabilistic Language Model,” Journal of Machine 
Learning Research 3 (2003): 1137–55. 

52 See Sergey Brin and Larry Page, “The Anatomy of a Large-Scale Hypertextual Web 
Search Engine,” Computer Networks and ISDN Systems 30 (1998): 107–17.

exponential growth in the number and diversity of websites, the rank-
ing of search results yielded by Internet search engines was becoming a 
critical issue. Prior to PageRank, most solutions sought to define a set of 
features for each website and then apply a scoring logic based on these 
features. In other words, the starting point for the ranking system was 
the act of defining a generic website, represented with a set of abstract 
universals. Consequently, every particular page would be a point in this 
parametric space of the generic website. Statistically, what happens is 
that if we increase the size of observations (i.e., the number websites), 
No, the ratio of the number of parameters (dimensions), Np, to the num-
ber of observations, Np / No, quickly gets close to zero. This means that 
the parametric space becomes full, and the discernability of different 
websites from each other becomes impossible. Therefore, considering 
the size and the diversity of websites across the Internet, the process 
of defining features and assigning values to each page was a bottleneck 
and theoretically limited. 
With the Markov-based procedure developed in PageRank, Google 
did not improve the classic approach, but rather changed the para-
digm. They changed the basic assumption of centralized ranking and 
simply assumed that individuals know best which pages are related 
and important for them — better than any axiomatic or semantic 
order could know. They looked on a micro-scale at how individu-
als link important websites to their websites, and based on these 
live streams of data, they constructed, continuously and adaptively, 
a Markov chain, mapping how people likely surf the Internet, and 
thereby they constructed a probabilistic network of connections 
within the pages. They defined the importance of a website as the 
result of the importance of the websites connected to that website, 
which is a self-referential equation with no externally imposed fea-
ture set. In terms of statistical representation, what happens is that 
this object-dependent representation is scalable to the size of the 

fig. 17
Language repre-
sentation based on 
concrete universals: 
Markov’s approach 
in constructing an 
empirical represen-
tation of a language’s 
words based on 
a set of observed 
sentences.

fig. 18
Distributed 
representation of 
linguistic models 
from Markov to the 
age of data deluge.
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observations (websites), since each concrete object brings its rep-
resentation with itself and acts as a new parameter for the represen-
tation of all the other pages (for simplicity’s sake, assume a binary 
relation of a website to the other pages). This practical application 
conceptually is aligned with the definition of the Dedekind cut, where 
instead of representing an object directly, each object is represented 
as the negation of its complement.

Fortunately, theories from linear algebra are available to solve this 
self-referential equation. The values of the first eigenvector of the 
constructed Markov matrix are used as the ranking of the pages. 
With the same methodology, it is possible to model similar problems 
in other fields. For example, a Markov chain based on available GPS 
trackings of cars can be used for modeling traffic dynamics in an 
urban street network.53

53 See Vahid Moosavi and Ludger Hovestadt, “Modeling Urban Traffic Dynamics in 
Coexistence with Urban Data Streams” (paper presented at 2nd ACM SIGKDD 
International Workshop on Urban Computing, 2013).

viii.ii self-organizing map
Following the same line of argumentation for the issue of 

representation in complex systems that we had for Markov chains, 
there is another powerful data-driven, pre-specific modeling 
method called the Self-Organizing Map (SOM).54 As a well-known 
method in machine learning, the SOM has a very rich literature 
with a diverse set of applications.55 According to the literature, the 
SOM is a generic methodology that has been applied in many clas-
sical modeling tasks such as the visualization of a high-dimensional 
space,56 clustering and classification,57 and prediction and function 
approximation.58 During the past three decades there have been 
different extensions and modifications to the original algorithm 
that was introduced by Teuvo Kohonen in 1982. For example, 
one can compare the SOM with other clustering methods or with 
space transformation and feature extraction methods such as the 
Principal Component Analysis (PCA).59 It is possible to explain and 
compare the SOM with vector quantization methods.60 Further, it 
is possible to explain the SOM as a nonlinear function approxima-
tion method and to see it as a type of neural network methods and 
radial basis function.61

However, in this work I present two main aspects of the SOM in rela-
tion to the idea of pre-specific representation and in comparison with 
other modernist mathematical approaches, which are based on the 
notions of ideals and abstract universals.

54 See Teuvo Kohonen, “Self-Organized Formation of Topologically Correct Feature 
Maps,” Biological Cybernetics 43, no. 1 (1982): 59–69.

55 See Teuvo Kohonen, “Essentials of the Self-Organizing Map,” Neural Networks 37 
(2013): 52–65.

56 Juha Vesanto, “SOM-Based Data Visualization Methods,” Intelligent Data Analysis 3, 
no. 2 (1999): 111–26.

57 Alfred Ultsch, “Self-Organizing Neural Networks for Visualization and 
Classification,” in Information and Classification: Concepts, Methods and Applications, 
ed. Otto Opitz, Berthold Lausen, and Rüdiger Klar (Berlin: Springer, 1993), 307–13; 
Juha Vesanto and Esa Alhoniemi, “Clustering of the Self-Organizing Map,” IEEE 
Transactions on Neural Networks 11, no. 3 (2000): 586–600.

58 Guilherme de A. Barreto and Aluizio F.R. Araujo, “Identification and Control of 
Dynamical Systems Using the Self-Organizing Map,” IEEE Transactions on Neural 
Networks 15, no. 5 (2004): 1244–59; Guilherme de A. Barreto and Gustavo M. Souza, 
“Adaptive Filtering with the Self-Organizing Map: A Performance Comparison,” Neural 
Networks 19, no. 6 (2006): 785–98.

59 Hujun Yin, “Learning Nonlinear Principal Manifolds by Self-Organizing Maps,” in 
Principal Manifolds for Data Visualization and Dimension Reduction, ed. Alexander N. 
Gorban et al. (Berlin: Springer, 2008), 68–95.

60 Christopher M. Bishop, Markus Svensén, and Christopher K. I. Williams, “GTM: The 
Generative Topographic Mapping,” Neural Computation 10, no 1 (1998): 215–34; Teuvo 
Kohonen, “Improved Versions of Learning Vector Quantization” (paper presented at 
the IJCNN International Joint Conference on Neural Networks, 1999).

61 See Barreto and Araujo, “Identification and Control of Dynamical Systems Using 
the Self-Organizing Map”; Barreto and Souza, “Adaptive Filtering with the Self-
Organizing Map.”
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viii.ii.i no more external dictionary and
 no moregeneric object

As discussed in section 5, in specific modeling the observations 
of any real phenomena are encoded in a generic object being repre-
sented by a set of given parameters. The underlying idea of pre-spe-
cific modeling is how to relax the modeling process from any specific 
and idealistic representation of the real phenomena — or, how not to 
depend on the generic object. For example, as mentioned before, in a 
Fourier transformation we assume that any dynamic behavior can be 
reconstructed and re-presented by a set of ideal cyclic forms. As fig-
ure 21 shows, an observed signal can be decomposed or can be approx-
imated as a linear summation of some ideal waves. In other words, 
here we assume that there is a generic sinusoidal wave (as an ideal 
behavior) with a parametric setup, and by changing the parameters of 
this generic function there are different instances of waves. Finally, 
an observed signal can be represented as a summation of these ideal 
waves as follows:
 m

s (t) = ao / 2 + Σ [aπcos(nwt) + bπsin(nwt)]
 n=1

Therefore, the Fourier transformation is among the specific mod-
els that are based on abstract universals. As discussed, although 
powerful and useful in many classical engineering and scientific 
applications, this approach of idealized modeling has fundamen-
tal limits in dealing with complex (multifaceted) phenomena. The 
opposite idea or the complementary idea in pre-specific modeling 
is that based on the concept of concrete universals, it might be pos-
sible to establish a self-referential setup using concrete objects (i.e., 
the observations) to model real phenomena without any external 
representation or any external control. In the domain of machine 

learning, this is the underlying idea of unsupervised learning. 
Interestingly, the SOM corresponds with the idea of representation 
based on concrete universals. Compared to Fourier decomposition, 
shown in figure 21, if we train a SOM with enough observations, we 
get a dictionary of potential dynamic forms collected via real obser-
vations (figure 22). In assuming each of the prototypical forms in 
the trained SOM as a word or a letter in a language, a trained SOM 
can be used as pre-specific dictionary for the target phenomena. In 
other words, in terms of signal processing, assuming a fixed seg-
mentation size, the observed signal can be translated into a set of 
numerical indexes (i.e., the index of the matching prototypes in the 
SOM network with each segment of the observation vector) — fur-
ther, these indexes will be used for further steps of modeling. The 
main point is that unlike the case of Fourier decomposition, here 
there is no external axiomatic setup for the transformation of 
observations into codes; the whole encoding system provided by 
the SOM is based on concrete observations.

Further, in a certain topology of SOM networks, the final indexes can 
be used to transform a multidimensional dynamic system into a one-
dimensional symbolic dynamic system. In this case, the indexes of the 
SOM can be considered as “contextual numbers.”62

In the field of computer vision and speech processing there has been 
a growing trend of methods that are based on the idea of representa-
tion that outperform many classical pattern recognition methods only 
in coexistence with a large amount of observations based on feature 
engineering. Classically, feature engineering means that in order to 

62 Vahid Moosavi, “Computing with Contextual Numbers,” arXiv preprint (2014).

fig. 21
Reconstruction of 
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on a parametric 
dictionary of ideal 
waves in Fourier 
decomposition.

fig. 22
Self-organizing 
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a pre-specific 
dictionary of 
dynamic forms from 
a large collection of 
observed signals.
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develop a pattern recognition model (i.e., in an image classification 
problem), one first needs to design a feature space to transform the 
images by that and then to develop a classification model on top of 
the engineered features. In the example of the Fourier analysis, the 
frequency and phase difference are the features. On the other hand, 
in this new category of modeling, sometimes called representation 
learning, there is no specific and separate feature-engineering task 
before adjusting the classification or prediction method.63 Among 
these algorithms is the sparse coding algorithm, which has conceptual 
similarities with the SOM.64 The principle idea of sparse coding is that 
if the original observations are n dimensional vectors, one can find an 
over-complete set of vectors (i.e., K vectors, where K>>n) to recon-
struct the original observations with a linear and sparse combination 
of these K vectors. While it looks similar to methods such as PCA65 or 
Independent Component Analysis (ICA),66 sparse coding (similar to 
the SOM algorithm) does not produce a global transformation matrix. 
In PCA for example, all the n orthogonal basis vectors proportion-
ally (according to their corresponding eigenvalues) contribute to the 
representation of all of the original observations, but in the SOM and 
sparse coding we have a kind of “distributed representation,” in which 
each original observation is directly represented by a few specific pro-
totypes (basis vectors). In other words, in the SOM each prototype 
is an object, which is not true for each principal component in PCA. 
They are from different worlds.
Further, this encoding approach can be applied in a hierarchical pro-
cess. For example, in the case of image processing it can be applied to 
small patches of an image, where each patch will be indexed to a few 
codes and the next level (for example the whole image) will then be 
represented by new codes constructed on top of the previous codes. In 
fact, the output of one step is used as input for the next layer. Therefore, 
the whole image is analyzed by multilevel sparse codes. This simple 
idea of coding in an unsupervised approach has been applied in many 
practical applications and it has been claimed that it works better than 
the wavelet decomposition method.67 I should note that the wavelets 
act similarly to the Fourier series, but they are more advanced, since 
there is no longer the assumption that the underlying ideal waves are 

63 See Bengio, Courville, and Vincent, “Representation Learning.”
64 See Bruno A. Olshausen, “Emergence of Simple-Cell Receptive Field Properties by 

Learning a Sparse Code for Natural Images,” Nature 381, no. 6583 (1996): 607–9.
65 Karl Pearson, “On Lines and Planes of Closest Fit to Systems of Points in Space,” 

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2, no. 11 
(1901): 559–72.

66 Aapo Hyvärinen, Juha Karhunen, and Erkki Oja, Independent Component Analysis 
(Malden, MA: John Wiley & Sons, 2001).

67 See Olshausen, “Emergence of Simple-Cell Receptive Field Properties by Learning a 
Sparse Code for Natural Images.”

stationary. Figure 23 shows an example of a sparse coding algorithm 
applied to image patches.

viii.ii.ii computing with indexes beyond ideal curves
Another property of the SOM is its unique disposition for 

structural learning. Figure 24 shows the main difference between 
the SOM and a classical way of relation (function) modeling. In 
simple terms, the primary goal of relation modeling is to find the 
relation between two dimensions based on a set of observations. In 
a classical way of modeling, one needs to fit a curve (a fixed struc-
ture) to a data set, while minimizing the deviations (errors) from 
the selected curve. In other words, the selected curve represents 
the logic that idealizes the observed data into a continuous rela-
tion. The SOM assumes that the logics (the argument that inte-
grates cases) can be extracted from within the observed data—and 
it conserves all the logics (arguments) according to which it clus-
ters the cases. What is optimized in such modeling is not how the 
data fits to logic, but how the logic, which is being engendered, can 
accommodate as much as possible from the data. 
In this sense, in an analogy to a governance and decision-making sys-
tem, we might say that the classical approach in curve fitting is a demo-
cratic setup, in which there is a global structure, tuned locally by the 
effect of individual votes. On the other hand, the SOM provides a social 
environment, in which each individual instance is not reduced but is 
kept active in its own individuality, while individuals can be unified 
into local clusters, if necessary.

68 This image is taken from James Hughes, Daniel J. Graham, and Daniel N. Rockmore, 
“Quantification of Artistic Style through Sparse Coding Analysis in the Drawings of 
Pieter Bruegel the Elder,” Proceedings of the National Academy of Sciences 107, no. 4, 
(2010) 1279–83.

fig. 23
Sparse coding: 
Learning data driven 
image dictionaries.67
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Here again, the final model of the real phenomena is an abstraction of 
any potential specific model and it does not import any axiomatic or 
semantic specificity. Further, if the real environment is dynamic and 
evolving, and if we can assume the availability of dynamic data streams, 
then the SOM evolves along with the environment. In other words, pre-
specific models are models in coexistence with data streams.

fig. 24
Computing with 
indexes beyond ideal 
curves.


